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Abstract—Multibeam imaging sonar is one of the primary
sensors for underwater navigation with uncrewed underwater
vehicles (UUVs) due to the robustness to turbidity and vari-
able lighting conditions that limit the applicability of standard
cameras. However, the operating principles and noise models
of real sensors make imaging sonar challenging to accurately
simulate, and acquiring real images experimentally is difficult
and costly. This paper presents an approach for transforming a
synthetically generated input image into the textural domain of
real sonar images using a variational autoencoder (VAE) with
a modified loss function. This allows us to generate realistic
sonar images of simulated scenarios emulating the texture of
real acoustic images. As a result, large datasets can be created
from a relatively small amount of real images, which can be later
used in many downstream applications, ranging from evaluating
data association algorithms to deep learning. The method was
evaluated using an isolated real and simulated dataset that
trained a separate convolutional neural network (CNN) to discern
between images in the sonar domain and simulated images. The
VAE has several advantages over a compared Cycle Consistent
Generative Adversarial Network (CycleGAN) approach, includ-
ing more texturally accurate generated images, and allowing for
more variation in generated images.

Index Terms—Marine robotics, sonar, variational autoencoder
(VAE), realistic acoustic image generation

I. INTRODUCTION

Due to the attenuation of the most commonly-used elec-
tromagnetic waves in water, many underwater vehicles use
acoustic (audio) systems for communications and sensing [1].
Sonar (sound navigation and ranging) is one of the primary
navigation systems for UUVs. In particular, many vehicles
use forward-facing multibeam imaging sonar as a navigation
aid for navigating complex underwater terrain [2]. However,
compared to depth sensors and cameras in above-water do-
mains, imaging sonar has only seen limited use in autonomous
navigation, and in many instances sonar images are interpreted
by a human.

There has been limited progress in mapping and navigation
from imaging sonar due to factors such as the high noise ratio
and elevation ambiguity in sonar images. One significant lim-
itation is the challenge of extracting repeatable image features
for use in localization and mapping techniques like SLAM and
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structure from motion [3]–[5]. Learned feature detector and de-
scriptor approaches [6] have been successfully applied to cam-
era, depth, and multi-modality matching. These approaches
offer considerable promise for imaging sonar. However, they
are typically based on training via large amounts of simulated
and real images. A major limitation for sonar is collecting
large datasets, due to the challenging conditions required for
deploying imaging sonar in representative domains.

One approach to address this issue would be to use simu-
lated sonar images. Although the principal of imaging sonar
is relatively simple, faithfully reproducing the artifacts that
occur in real sonar images is complex. Factors such as beam
cross-talk, interfering returns and sensor noise depend on many
factors and vary between specific sensors.

The current approach is inspired by previous work [7]
that has addressed this problem by using the established
CycleGAN [8] approach to generate realistic sonar images.
CycleGANs produce realistic results on simulated images,
however this approach produces some limitations.

In our work, we propose a VAE. This approach offers
multiple advantages to the CycleGAN approach. First, the
proposed method improves textural quality by learning the
representation of texture through the training of the first
VAEs network. Further, the trained conditional VAE is able to
generate many output images from one simulated image input,
as it takes a sample from a latent space distribution based on
the provided input image. This second advantage is significant
as it produces a much larger amount of generated images
compared to the CycleGAN which typically deterministically
generates only a single output image based on one input image.

II. RELATED WORK

A. Paired Image Transforms

Initial work performed in this area focused on using the
pix2pix architecture in order to generate realistic looking sonar
images [9]–[11]. Systems trained using this type of network
showed good results, but require paired data of matching
simulated inputs and ground truth outputs. For underwater au-
tonomous navigation, ground truth data is often not available,
and hence paired datasets are difficult to acquire in most cases.
As a result, more general methods need to be used in order
to create a mapping from a simulated image to a sonar image
where no ground truth paired structural result is available.

B. CycleGAN

The current state of the art method for converting simulated
sonar images into realistic sonar images relies on the Cycle-
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Fig. 1: The proposed VAE Network Architecture

GAN framework [12]. This approach attempts to reconstruct
a real sonar image scene where the dimensions and distance
of the objects in the scene are known quantities. Due to the
availability of ground truth data, the paper is able to compare
its approximated generated result to real sonar images, which
it assumes to be a ground truth representation. Quantitative
comparisons to ground truth data were evaluated in addition
to qualitative assessments due to these factors. As CycleGANs
produce a deterministic mapping between the image domains,
it results in one generated image for each input image. The
quantitative evaluation methods presented use several metrics
including Mean Squared Error, Peak Signal to Noise Ratio,
and Structural Similarity Index Measure [13].

III. METHOD

A. Dataset Acquisition

There are two datasets which are of importance in this
research. The first dataset is the reference real sonar images
which were captured using a 512 beam Blueprint Subsea
Oculus 1200d imaging sonar [14]. The second dataset consists
of the simulated images. These were created through the use
of a pre-existing sonar simulator developed by the Tethys Lab
using the Unity Game Engine. An algorithm was created to
circle a set of objects and take persistent image captures of
an artificial scene. In total there were 1732 simulated images
used in training, and 2662 real sonar images used in training.
A subset of this data was used for validation.

B. Conditioned Deep Feature Consistent VAE

The method presented leverages the modified loss metric
from deep feature consistent VAEs [15] along with a unique
training method to provide results with strong clarity and
low diffusion (see Fig. 3). It is first proposed to generate an
encoder-decoder VAEs scheme (where D(·) is the decoder,
and E(·) is the encoder) such that the following condition is
satisfied:

minD(E(x))− x, and Z ∼ N (0, 1) (1)

∀x ∈ X , where x is a random image sampled from the set of
training images X , and Z is the representation of the latent
space as a unit-variance normal distribution [16]. Following
this, to generate image data in the natural sonar domain
from simulated images, the simulated images are placed as
a training input into the trained VAE (see Fig. 2). This results
in the simulated image being encoded and decoded using
the encoder and decoder weights learned from training sonar
dataset. Simultaneously, the network is biased to learn the
geometrical representations of the desired sonar objects. The
perceptual loss function for both networks can be described
as [15]:

Lp =
∑
i

wiL
i
p, with Li

p = ||ϕ(x)i − ϕ(x̂)i||2 (2)

where ϕ(x)i and ϕ(x̂)i are representations of the original
image x and the reconstructed image x̂ at each layer, with
weight wi.

The above perceptual loss is summed with the Kullback-
Leibler (KL) divergence loss to ensure a matching distribution
[17]. The KL divergence loss is given by:

LKL = KL(q(t|x)||p(t)) (3)

where q(t|x) is the variational distribution and p(t) is the
prior over the latent variables. q(t|x) is the learned distribution
which is learned by the encoder network, and p(t) is chosen
to be the standard normal distribution.

The total loss of the system is given by:

L = Lp + LKL (4)

The latent dimension size is set to 500, with a learning rate
of 5 · 10−4. Dropout is used as a regularisation method. For
both convolution and transpose convolutions, a leaky Rectified
Linear Unit function is used as an activation layer. For feature
extraction it was found that using the pretrained VGG19
model [18] excluding the output layer extracted features much
quicker than training a feature extractor from scratch. As a
result this is recommended during training.
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Fig. 2: Architecture and training pipeline of the proposed method.

Both training cycles use an early stopping mechanism to
limit training networks after the requisite feature mappings
have been learned. From experimentation, it was found that
for the initial training cycle, 80 epochs was sufficient, and for
the second training cycle, 60 epochs was sufficient. To draw
random samples after the network was trained, a sample is
drawn from the second input encoding, and is perturbed with
some Gaussian noise variation given by Z ∼ N (0, 1).

A significant advantage of the conditioned Deep Feature
Consistent Variational Autoencoder (cDFCVAE) over the Cy-
cleGAN network structure is its resistance to mode collapse
during training. Mode collapse occurs when a network learns
to predict a very small subset of values that satisfy a specified
loss metric. By “cheating” the task in this way, the network
usually doesn’t learn as much information as it should. The
mode collapse issue is particularly prevalent in CycleGANs
due to an imbalance in the strength of discriminators and
generators learning representations of images. The cDFCVAE
circumvents this issue by attempting to map the entire space
of condensed images, and drawing a random sample from this
space. This prevents mode collapse as long as the generated
space is properly normalized. In addition to this, in the
formulation of the VAE presented, early stopping is used to
prevent the model from overfitting to either dataset. As a result
losses do not become too low where the encoder or decoder
is no longer able to learn any further information.

For the intended use case of this algorithm, it presents
another significant advantage. As the generated images can
be generated in a non-deterministic way through the use of
random sampling, a large amount of generated images can be
drawn from a single simulated input image. This is due to the
fact that a one to many mapping is created between the latent
space representation and the final transformed output.

IV. RESULTS

The result of implementing the algorithm can be seen below
(see Fig. 3,4). The results show excellent textural translation,
and strong structural translation.

Evaluating nonstandard generated images is often challeng-
ing, especially when a ground truth result is not available.
Initially, traditional generative image evaluation techniques
such as the Frechet Inception Distance (FID), Inception score
and KL Divergence were investigated. However on closer
inspection, these methods were unsuitable for sonar images.
This is because sonar image features are significantly different
from standard images due to the method in which pictures are
taken with sonar imaging equipment. Obtaining a FID score,
Inception score or KL Divergence value would only provide
information about how closely the generated sonar images
match a set of organic real world images. As sonar images
are not images taken with a standard imaging camera, these
scores would not provide a fair comparison.

As an alternative, a CNN was constructed to check for
accuracy by training the CNN on the unused segment of the
dataset (see Fig. 5). The output neurons of the CNN were
taken without a classification layer in order to determine how
close to the space of real or fake images any given image was.

The modified optimisation problem used to determine the
metrics present in Table I can be described by:

max
Ē,D̄

∑
n

C(Ē(D̄(y)))− C(y) (5)

where C is the CNN that the images are passed into to
determine if they are a real or generated image.

The results in table I show that the cDFCVAE that has
been designed performs better than a CycleGAN approach for
the same problem, using the same dataset. A point to note in
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Fig. 3: On the left, organic and inorganic scene transformations. On the right, an example of the one-to-many result possible with our approach. Reference
Sonar images are present at the top of the figure.

Fig. 4: Set of 9 different generated images. Several of the images have features
that are not present in any of the datasets. This is a result of the sampling
present from the VAE structure.

the evaluation method is the fact that the dataset for training
images contained mainly constructed images (84%), and only
a few organic images (16%). The performance on the network
may be dependent on this factor, which is why there may
be a significant difference between the accuracy metrics for
constructed and organic images.

This evaluation method is still not sufficient to conclude
that the method performs well, as the geometric structure of
the real sonar images and simulated sonar images was often
significantly different.

Due to the reasons above, resultant images were also
qualitatively inspected, and it was noted that the results show

Fig. 5: CNN Structure used for classification

TABLE I: Comparison of CNN output between original and translated
images. Outputs close to 1 indicate that the CNN classified most of the images
as belonging to the dataset of real images.

Raw Sim. Image CycleGAN C-DFCVAE

Organic Objects 0.114-0.212 0.442-0.843 0.507-0.803
Constructed Objects 0.188-0.281 0.266-0.652 0.552-0.867

excellent textural translation from the initial simulated sonar
imagery. These results also appear consistent with the source
image texture (see Fig. 3). Structural translation shows strong
performance as well, with both major and minor features being
translated across domains, and minimal feature loss.

V. CONCLUSION AND FUTURE WORK

A method was presented to synthetically generate realistic
looking sonar images from a relatively small amount of real
images using a VAE. Our method replicates the textural quality
of sonar images accurately, while also simultaneously allowing
the creation of a large amount of generated images.

In the future, these results can be later used in many down-
stream applications, ranging from evaluating data association
algorithms to deep learning. When used in this manner, the
upscaling algorithm for the decoder will need to be evaluated.
Many current upscaling algorithms suffer from ‘checkerboard’
artifacts usually observable in the Fourier domain of an image.
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While these effects are subtle and difficult to observe with the
human eye, algorithms will be able to pick up on the structured
patterns caused by upscaling.

Another avenue for future research lies in the evaluation
methods for the algorithm presented. As mentioned above,
quantitative evaluation is one of the most challenging aspects
of generative research, especially in the field of sonar imaging.
If a strong quantitative evaluation metric could be determined
to assess the quality of generation, the method could be
cross evaluated and compared to other generative approaches.
Being able to evaluate abstract generated structures would be a
significant benefit to the further development of new computer
vision algorithms for underwater autonomous navigation.
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