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ABSTRACT Underwater 3D laser scanners are an essential type of sensor used by unmanned underwater
vehicles (UUVs) for operations such as navigation, inspection, and object recognition and manipulation.
Scanners that acquire 3D data by sweeping a laser plane across the scene can provide very high lateral
resolution. However, their data may suffer from rolling shutter effect if the change of pose of the robot with
respect to the scanned target during the sweep is not negligible. In order to compensate for motion-related
distortions without the need for point cloud postprocessing, the 6-DoF pose at which the scanner acquires
each line needs to be accurately known. In the underwater domain, autonomous vehicles are often equipped
with a high-end inertial navigation system (INS) that provides reliable navigation data. Nonetheless,
the relative pose of the 3D scanner with respect to the inertial reference frame of the robot is not usually
known a priori. Therefore, this paper uses an ego-motion-based calibration algorithm to calibrate the extrinsic
parameters of the visual-inertial sensor pair. Simulations are performed to quantify howmiscalibration affects
motion-related distortion. The method is also evaluated experimentally in laboratory conditions.

INDEX TERMS 3D sensing, underwater robotics, visual-inertial calibration, odometry-based mapping.

I. INTRODUCTION
Unmanned underwater vehicles (UUVs) are being increas-
ingly used in industry out of safety and cost reasons. In par-
ticular, autonomous underwater vehicles (AUVs) are already
performing tasks like inspection [1], object recognition [2],
manipulation [3], or navigation [4]. Sensing their surround-
ings is essential for them to successfully carry out their tasks.
Therefore, they are usually equipped with some type of 3D
sensor, which are mainly based either on acoustic (SONAR)
or light signals. Optical sensors are further divided into pas-
sive (stereo vision, structure from motion (SfM)) or active
(LiDAR). The main advantage of active optical sensors is that
their lateral resolution and refresh rate are much higher than
acoustic [5]. Actively projecting structured light makes them
suitable to work in featureless environments. Their relatively
short range is usually enough for intervention tasks, since the
robot needs to get close to the target.

Some underwater 3D scanners illuminate the whole scene
at once with a certain spatial pattern [6]–[9] and retrieve 3D
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FIGURE 1. Relative motion between the scanner and the object produces
distortions in the resulting point cloud. An example scanning a spherical
object of radius 100 mm is shown in the left image. This distortion can be
compensated by compounding each scanned line with the corresponding
robot pose. The result is shown in the right image.

information of the whole field of view (FoV) at the same
time. They can be considered global shutter sensors because
their acquisition time for the whole scene is extremely short
and are therefore suitable to scan scenes in which high
dynamics are present. However, they can only provide limited
resolution [9].

Another popular approach are laser line scanners (LLSs)
[10]–[15]. These 3D scanners acquire the scene by sweep-
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FIGURE 2. Geometrical scheme of the approach used for motion
distortion compensation. The goal of the approach is referencing each
scanned point p with respect to a fixed reference frame {W }. Please note
that the INS pose W xI is time-dependant (it changes as the robot moves)
but the transformations between INS, camera and laser (I tC and C tL,
respectively) are fixed. p represents an arbitrary point at the intersection
between the laser plane πL and the target surface S.

ing a laser plane. One of their main advantages is their
high point cloud density. They typically make use of colli-
mated laser light sources with a wavelength ranging between
the green and blue spectrum. This choice of wavelengths
responds to the high attenuation of light sources at other
frequencies when transmitted in water [16]. For example,
IR-based sensors are only capable of scanning at very short
ranges [17]–[19]. A challenge for LLSs is that it takes them
a certain amount of time to sweep the laser plane across
their entire FoV. During this time, the robot’s pose may have
changed significantly, which would introduce motion-related
distortions in the outcoming point cloud (rolling shutter
effect [20], see figure 1). This problem is especially present
in inspection and intervention missions where high reso-
lution is desired. In these cases, the sensor needs to scan
a higher number of lines, resulting in a longer scanning
time. If no compensation for the motion distortion is per-
formed, the accuracy of the resulting point cloud is severely
diminished even for low speeds of the robot. Usually, these
tasks only allow distortion levels in the order of mm or
a few cm.

The approach to compensate for motion distortion fol-
lowed in this paper is based on referencing each line scanned
by the LLS to its corresponding temporally unique frame.
This approach is shown in figure 2. This way, rather than
considering only one frame for all the lines in one scan,
there are as many frames as scanned lines. In order to
achieve a highly accurate point cloud, the 6-DoF pose of
the scanner’s camera {C} at the time of acquiring each line
needs to be precisely known. This is done in this paper
by composing the corresponding pose of the INS W xI with

the relative transformation between the INS and the laser
scanner I tC .

The LLS triangulates the position of the points that lie at
the intersection between the laser plane πL and the target
surface S. Each of these points p complies with:

p ∈ πL ∩ S (1)

The LLS returns the 3D pose of each of these points with
respect to the camera frame Cp. They can be then expressed
in the world reference frame using the following composition
(see appendix):

W p = W xI ⊕ I tC ⊕ Cp (2)

The transformation I tC is not usually known a priori, and
therefore an ego-motion-based extrinsic calibration is previ-
ously performed. It can be deduced that a fine calibration is
paramount to achieving an accurate point cloud.

It should be pointed out that the proposed approach makes
a number of assumptions: (i) the accumulated drift of the INS
data in each scan is negligible, (ii) there is a good synchro-
nization between INS and laser data, and (iii) there is a known
marker in the scene such as a checkerboard or an ArUco [21],
[22] for calibration. These assumptions are realistic because
of the high-end INS and LLS available at the lab, as will be
explained in section III, and because the calibration will be
performed in controlled laboratory conditions.

The goal of this paper is two-fold: First, a robust calibration
algorithm is developed and fed it with sufficient data to
achieve an accurate result. Second, this result is applied to
compensate for the motion distortion of each scan.

The remaining of the paper is structured as follows.
First, the relevant state of the art is reviewed in section II.
Later, the experimental set-up is described in section III.
Then, the ego-motion-based calibration algorithm used in
this paper is explained in section IV. The simulated and
experimental results are presented in sections V and VI,
respectively. Finally, the drawn conclusions are summarized
in section VII.

II. RELATED WORK
This section reviews the relevant literature on topics related
to this paper. First, underwater 3D laser scanning is studied
in section II-A. Then, extrinsic calibration of a visual-inertial
sensor pair is analyzed in section II-B.

A. UNDERWATER 3D LASER LINE SCANNING
Underwater 3D scanners are an essential type of sensor used
to acquire the geometrical shape of obstacles or objects of
interest. Their different working principles were reviewed
and compared in a previous work [16]. This section will focus
on LLSs.

In underwater metrology tasks, the scanner is usually
mounted on a static tripod with a rotational head [23]. In this
case, the scanner acquires different point clouds from dif-
ferent viewpoints, which are then registered together with
dedicated software like Leica’s [24].

VOLUME 9, 2021 93385



M. Castillón et al.: Extrinsic Visual–Inertial Calibration for Motion Distortion Correction

However, underwater LLSs are increasingly used byUUVs
when performing a wide variety of dynamic tasks, including
navigation [25], [26] or manipulation [27]. When mounted
on a moving platform, 3D laser scanners need to account for
the relative motion of the scanner with respect to the target in
order to achieve a consistent point cloud. Several approaches
can be found in the literature to deal with this problem.

A direct approach is embedding an inertial sensor such
as an inertial measurement unit (IMU) [28], [29] or an INS
[30]–[32] with the laser scanner. On the one hand, IMUs are
relatively small and cheap sensors but their measurements
are drift-prone. A possible solution to counteract this drift
is using GPS [28]. However, since GPS signal is rapidly
attenuated in water, it can only be used on surface. On the
other hand, INSs can accuratelymeasure displacements while
accumulating a drift of down to 0.01% of the travelled
distance in optimal conditions [33]. However, their size is
typically a diameter of more than 20 cm and a weight in
water of 10 kg. This is not usually a problem when the
scanner is mounted (along with many other sensors) in a
work-class ROV. Nonetheless, it becomes problematic if the
scanning task is to be performed with a smaller AUV such as
Girona500 [34]. In our approach, we try to take advantage of
the high-end performance of the INS integrated in an AUV
so that the size of the scanner need not be increased.

A possible approach to integrate the measurements of the
scanner with the navigation system of the robot is placing
the scanner in a specific position and orientation that makes
it easier to measure using the CAD models of the vehicle.
For example, in [35] the scanner is set up at the front of
the remotely operated vehicle (ROV) and looking down.
Nonetheless, due to the errors between the measured and
the actual transformation from the scanner to the inertial
frame of the robot, the authors in [35] are aware that they
should further counteract ‘‘the short term vehicle motion that
introduces errors across sequential laser images’’. Therefore,
in our approach we aim at accurately calibrating this trans-
form in order to reduce these errors for any arbitrary camera
set-up.

Yet another approach to deal with motion distortion is min-
imizing the robot speed while making a scan. Following this
idea, the robot moves slowly around the inspected structure.
Because of its low speed, the displacement of the scanner
during each scan can be assumed as negligible and the scans
can be considered as rigid. Then, consecutive point clouds
can be registered using iterative closest point (ICP) and the
map is created [1]. In our approach, however, wewould like to
enable the robot to move at its normal operational speed while
scanning and not fully rely on post-processing algorithms.

In summary, the goal of our approach when compared
to the state of the art is correcting motion distortion while
(i) limiting the size of the scanner, (ii) allowing to mount
the scanner anywhere on the robot, (iii) allowing the robot
to move at normal operational speeds, and (iv) limiting the
need for post-processing software.

An essential step of our approach is achieving an accurate
calibration between the camera and the inertial sensor frames.
Different approaches used to calibrate visual-inertial sensor
pairs inside and outside water can be found in the literature.
The main ones are reviewed in section II-B.

B. EXTRINSIC CALIBRATION OF A VISUAL – INERTIAL
SENSOR PAIR
Extrinsic calibration between two reference frames refers
to recovering the 6-DoF transform that relates both frames.
Extrinsic calibration between two or more rigidly-mounted
sensors is a very relevant topic in autonomous robotics,
since it allows to accurately fuse measurements coming from
different sensors. In current robotic platforms above water,
the sensors to be calibrated are usually cameras, navigation
sensors and time of flight (ToF) LiDARs. Typical sensor
pairs are camera vs. navigation or LiDAR vs. camera. The
different approaches to solve this calibration are typically
divided in two parts: (i) first, the front-end extracts incre-
mental or absolute displacements from sensor readings (see
section II-B1); and (ii) second, these displacements are fed to
the minimization algorithm in the back-end to compute the
rigid transformation (see section II-B2). This way, when the
sensor type changes, it is typically enough to use a different
front-end, whereas the back-end can remain the same.

1) FRONT-END
The front-end is in charge of calculating the sensor pose based
on its readings. It depends strongly on the type of sensor used.
In our case, we are mainly interested in cameras and inertial
sensors.

Inertial navigation sensors like INS usually fuse and
integrate the information from different sensors (such as
accelerometers, gyroscopes, and doppler velocity log (DVL))
and directly provide the 6-DoF pose as an output. They can
also use absolute position sensors such as ultra-short baseline
(USBL) or GPS (outside water) to correct the drift.

Extracting the pose from camera images can be mainly
done in two fashions. If it is possible to place a known pattern
in the set-up, the camera pose can be extracted from 3D-2D
correspondences, using the Perspective-n-Point algorithm. In
this case, each camera pose is directly referred to the pattern
reference frame, so they are absolute poses and no drift is
accumulated. The particularities of the underwater environ-
ment make it necessary to use an adaptation of this algorithm
(see section III). If no pattern can be placed inside the FoV of
the camera, SfM can be used. SfM is used to reconstruct the
6-DoF displacement between two camera frames bymatching
corresponding features. However, this reconstruction is up to
a scale. In order to compute this scale, several approaches
can be used. In the underwater domain, it is typical to use the
readings of the pressure sensor or laser scalers [36]. Please
note that this front-end can also be used by camera-based
(triangulation) laser scanners, which is the case presented in
this paper.
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For ToF LiDARs, the displacement between two subse-
quent sensor readings can be computed by finding correspon-
dences between their point clouds in a SfM-like manner. This
is typically called LiDAR-based odometry. Examples can be
found in [37], [38].

2) BACK-END
The goal of the back-end is computing the rigid 6-DoF trans-
formation between two or more sensors using their respective
egomotions. This boils down to a non-linear minimization
problem that is typically tackled using either non-linear
least-squares estimation or a filter-based approach. Most of
the methods found in the literature use the corresponding
incremental displacement of each sensor. Please note that
each sensor has its own reference frame (and the transform
between them is unknown). Therefore, this is a more compli-
cated problem than bundle adjustment. In bundle adjustment,
used for example in the calibration of a camera stereo pair,
both cameras are referenced with respect to the same, cor-
responding features (for instance, a checkerboard appears in
both images simultaneously).

Some approaches in the literature use least-squares esti-
mation. In [39], [40], the authors propose a solution based
on previous approaches that solve hand-eye calibration using
incremental motions. In their minimization algorithm they do
not only optimize the rigid transformation between the sensor
pair, but also the trajectory of one of the sensors to make it
more robust to noise. They also study which conditions the
trajectory of the sensors need to comply with in order to make
the problem fully observable. They come to the conclusion
that ‘‘so long as the axis of rotation of the incremental poses
remains fixed [in 3D], any translations and any magnitude of
rotation will not avoid singularity’’. In [41], the authors pro-
pose a robust algorithm to calibrate multi-sensor arrays. This
method also uses incremental motions but divides the prob-
lem in different steps: finding an initialization for each sensor
pair, estimating first the rotational components, removing
outliers, estimating the translation and finally combining the
readings from all the sensors. They do not optimize the
trajectory of any of the sensors.

Other authors use filter-based approaches, like [42]–[44]
among others. In many cases, the filter is exploited for
visual-inertial navigation. In our case, the navigation data
from the robot’s INS is reliable, so these methods are not
further considered.

Compared to the already presented ones, other works
tackle the problem using slightly different approaches.
In [45], the authors include the time offset between sensors as
a parameter to estimate. In [46], the trajectory is parameter-
ized with B-splines and included in the optimization problem.
In [47], only the parts of the trajectory that contribute more
to the observability of the problem are considered, so that
the computational complexity is reduced. Other interesting
works can be found in [48]–[50].

In our work, both sensors provide absolute measurements.
Consequently, the back-end approach followed in this paper

FIGURE 3. The Girona1000 equipped with the laser scanner.

considers the trajectory of both sensors as absolute poses
and builds a pose graph that, using non-linear least squares,
optimizes the relative sensors transform and the INS true
path, as it suffers from integration drift (see section IV). This
connects our work with [39], [40]. Therefore, it is important
to understand the differences between both approaches.

In [39], [40] only incremental pose measurements are used
to recover sensor calibration. It is also shown how only one
of those sensors true path needs to be estimated. In our work,
we use sensors that provide absolute measurements, and we
build the problem as a pose graph, which is more restrictive
as it constrains consecutive incremental poses to share a
common pose. Note that, although we could get incremental
pose measurements through differentiation, the propagation
of its uncertainties is not trivial and could become another
source of error.

III. HARDWARE DESCRIPTION
This section briefly explains the performance characteristics
of the equipment used in this work. The robotic platform
used is Girona1000 (see figure 3), which is a newer ver-
sion of the Girona500 [34], previously developed at the lab.
The Girona1000 is a lightweight, modular intervention AUV
(I-AUV) that can be easily reconfigured for different tasks
by changing its payload and thruster configuration. In the
current configuration, the AUV uses 5 thrusters to control
the yaw, surge, sway and heave, being passively stable in
pitch and roll. Its navigation system is based on an INS aided
by a DVL, a fiber optic gyroscope (FoG), and a pressure
sensor. The payload integrates a forward-looking 3D laser
scanner [14] previously developed in the lab, which is capable
of scanning 200k points/s at a scan rate of around 0.5 Hz
with sub-millimetric accuracy. It uses a green laser source
with a nominal wavelength of 520 nm and an output power
of 50mW. Its FoV is of approximately 40◦×40◦ and its lateral
resolution is of up to 0.008◦.

The camera model used in this paper is the one intro-
duced in [14]. Basically, it consists on a standard in-air
camera model placed behind a flat refractive surface.
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The in-air model used is the standard OpenCV pin-hole
camera model [51]. However, due to the refraction of light
rays at the interphase between air and water, this model does
not accurately represent distortions under water [52], [53].
Therefore, the double distortion process suffered by light
rays in their way to the camera is explicitly modelled. For a
more detailed explanation, the reader is referred to [14]. The
internal parameters of the scanner are estimated in a previous
calibration process.

IV. INS – CAMERA CALIBRATION
An essential step of our approach is achieving an accurate
calibration between the camera and the inertial sensor frames.
The back-end minimization algorithm used in this paper is
explained in this section. As seen in section II-B, this method
could be used to estimate the 3D pose calibration between
any combination of sensors that can provide absolute pose
observations. In our case, we will assume that the desired
calibration I tC is the one from the reference frame of the INS
{I } to the reference frame of the scanner’s camera {C}.

The goal of the task is to find the camera pose with respect
to the INS frame, namely I tC ∈ SE(3), given a set of n
observed, noisy INS poses zI = [zI1, . . . , zIi, . . . , zIn] with
respect to the north-east-down (NED) frame {WI }, and a
corresponding set of n observed, noisy camera poses zC =
[zC1, . . . , zCi, . . . , zCn], with respect to the reference frame
of the observed feature or pattern {P}.
Figure 4 shows a scheme relating the variables of interest.

For the sake of readability, the reference frame to which some
variables are referred is not explicitly written, but they can
be directly inferred from the figure. The actual and observed
INS poses xI and zI are always referred to {WI }, whereas
the observed camera poses zC are always referred to the
pattern {P}.
All the observations of both the camera and the INS are

assumed to have zero-mean Gaussian noise. Since the actual
trajectory of the robot xI and the transformW tP are not known
in reality, they are optimized along with I tC . The actual,
unobserved pose of the inertial reference frame of the robot
at time i is named xIi. Now, this problem is modelled as the
pose graph in figure 5. Note that the observations from all
the robot poses are connected through a common feature: the
calibration pattern. The goal of the algorithm is to find the
optimal trajectory x∗I and the optimal transformations W tP
and I tC given the observations from the INS and the cam-
era. This can be formulated as maximizing the full posterior
probability of the optimization variables (xI ,W tP, I tC ) given
the set of measurements (zI , zC ) [54]:

x∗I ,
W t∗P,

I t∗C = argmax
xI ,W tP, I tC

·P
(
xI , W tP, I tC | zI , zC

)
(3)

Applying Bayes’ theorem:

x∗I ,
W t∗P,

I t∗C = argmax
xI ,W tP, I tC

P
(
zI , zC | xI , W tP, I tC

)
·P
(
xI , W tP, I tC

)
, (4)

FIGURE 4. The observed camera poses zCi can be expressed as a function
of the optimization variables xIi , W tP and I tC .

FIGURE 5. Pose graph representation of the minimization problem. Blue
circles represent the minimization variables.

whereP
(
zI , zC | xI , W tP, I tC

)
are the observationmodels of

the INS and the camera and P
(
xI , W tP, I tC

)
are the prior

beliefs of the optimization variables. Looking at figure 5 it
can be seen that some variables are assumed independent: the
trajectory of the robot xI and the inertial measurements zI
are independent of I tC and W tP, and camera measurements
zC are independent of zI . Also, each measurement zC and zI
is considered absolute and thus not dependant on previous
measurements. Therefore:

x∗I ,
W t∗P,

I t∗C = argmax
xI ,W tP, I tC

P (zI | xI )P
(
zC | xI , W tP, I tC

)
·P (xI )P

(
W tP

)
P
(
I tC
)

(5)

We assume that there is no prior knowledge of the mini-
mization variables available. Therefore, P (xI ), P

(
W tP

)
and

P
(
I tC
)
are assumed uniform distributions and removed from

the equation. If there were reasons to consider different
distributions for these terms, they could be easily incorpo-
rated back in the equation. Expanding the equation to all the
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available observations:

x∗I ,
W t∗P,

I t∗C = argmax
xI ,W tP, I tC

n∏
i=1

P (zIi | xIi)

·P
(
zCi | xIi, W tP, I tC

)
(6)

These two remaining terms are the observation models of
both sensors. They are both assumed to have Gaussian dis-
tributions. At the side of the INS, zIi is considered a random
observation of a distribution centered in the expected value
x̄Ii with a covariance matrix 6Ii. Formally:

P (zIi | xIi) ∼ N (x̄Ii,6Ii)

∝ exp
(
− [zIi − x̄Ii]T 6−1Ii [zIi − x̄Ii]

)
(7)

The camera pose can also be written using the optimization
variables

(
xI , W tP, I tC

)
(see figure 4):

ẑCi(xIi, W tP, I tC ) = 	W tP ⊕ xIi ⊕ I tC (8)

Therefore, the measured camera pose zCi is assumed a ran-
dom observation of a normal distribution centered around the
expected value ¯̂zCi(xIi, W tP, I tC ) with an associated covari-
ance matrix 6Ci:

P
(
zCi | xIi, W tP, I tC

)
∼ N

(
¯̂zCi(xIi, W tP, I tC ),6Ci)

)
∝ exp

(
−

[
zCi − ¯̂zCi(xIi, W tP, I tC )

]T
6−1Ci

·

[
zCi − ¯̂zCi(xIi, W tP, I tC )

])
(9)

Combining equations (6), (7) and (9) and taking the nega-
tive logarithm:

x∗I ,
W t∗P,

I t∗C = argmin
xI ,W tP, I tC

n∑
i=1

rIi(xIi)T �Ii rIi(xIi)

+ rCi(xIi, W tP, I tC )T �Ci rCi(xIi, W tP, I tC ), (10)

where:

rIi(xIi) = zIi − xIi (11)

rCi(xIi, W tP, I tC ) = zCi − ẑCi(xIi, W tP, I tC ) (12)

�Ii = 6
−1
Ii (13)

�Ci = 6
−1
Ci (14)

If these variables are stacked into vectors:

r(xI , W tP, I tC ) = [rI1 . . . rIn rC1 . . . rCn]T (15)

� = diag [�I1 . . . �In �C1 . . . �Cn] , (16)

the final expression is:

x∗I ,
W t∗P,

I t∗C = argmin
xI ,W tP, I tC

r(xI , W tP, I tC )T

·� r(xI , W tP, I tC ), (17)

which is the standard equation of non-linear weighted least
squares. Since the weight vector is built using the inverse

of the covariance matrix of each residual, the optimized
variables are found by minimizing the sum of the squared
Mahalanobis distance of the residuals. It should be high-
lighted that all the variables that refer to poses, observations,
displacements or transformations are actually 6 × 1 vectors
because they belong to SE(3). Covariance and information
matrices are therefore 6 × 6 and the size of r(xI , W tP, I tC )
is 12 n× 1.

In our current implementation of equation 17 on
Ceres [55], the minimizer is fed with a weighted residual
array rather than its squared sum, since this approach was
found to convergence faster in practice. In order to do so, each
term in r(xI , W tP, I tC ) is weighted with the upper triangular
factorization of the corresponding element of �:

rT� r = rTLLT r = (LT r)T (LT r), (18)

where

� = LLT (19)

is the Cholesky factorization.
Finally:

x∗I ,
W t∗P,

I t∗C = argmin
xI ,W tP, I tC

LT r(xI , W tP, I tC ) (20)

The uncertainty of each observation of the INS 6Ii is
directly given by the sensor, whereas the uncertainty of each
camera observation 6Ci is computed with the Monte Carlo
algorithm by applying random noise to the image frame.

V. SIMULATION RESULTS
The calibration method explained in the previous section was
validated on synthetic data. First, the extrinsic calibration
was simulated by generating the front-end data which was
compared later on to the ground truth (see section V-A).
This proved useful to help relate the sensors’ noises with the
final uncertainty of the calibration result. Then, the motion
distortion correction was evaluated to have a better grasp
of how errors in the calibration propagated to the final 3D
reconstruction (see section V-B).

A. CALIBRATION ON SYNTHETIC DATA
The goal of the simulation presented in this section is to
validate whether a given trajectory has enough information
to calibrate all DoF and quantify its robustness to noise.
In our case, the trajectory is constrained in two different
forms. First of all, the Girona1000 is designed to be controlled
in surge, sway, heave, and yaw, being passively stable in
roll and pitch. However, it is possible to control pitch in a
short-range. Also, it is important to test if the calibration can
be performed in a constrained space, such as a water tank,
noticeably reducing resource and logistic costs.

A ground truth of the INS and camera trajectories (xI , xc)
has been generated given a known I tC and W tp. The INS
trajectory is generated considering a 6 m ×5 m ×5 m region
where the robot can safely move, and keeping a static pattern
inside the FoV of the camera. Then, (zI , zc) are generated
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taking random samples of the measurement models, defined
as follows:

zIi = zIi−1 ⊕1xIi ⊕ w1I ; w1I ∼ N (0,61I )

61I = diag([σ 2
x σ

2
y σ

2
z σ

2
ψ σ

2
θ σ

2
φ ]) (21)

zci = xci ⊕ wc ; wc ∼ N (0,6c)

6c = diag([σ 2
x σ

2
y σ

2
z σ

2
ψ σ

2
θ σ

2
φ ]). (22)

The uncertainties in (21) are composed as:

6Ii= JTi−i⊕
(
JTi−i	6Ii−1 J i−i	

)
J i−i⊕+JTi⊕6Ii J i⊕. (23)

where J⊕ and J	 are the Jacobians of the composition and
of the inverse composition, respectively.

The INS position measurements (21) are modeled to drift,
including a noise added to the displacement. Here, 61I is
assumed to be constant, and has been set to:

σx = 1 mm σψ = 6× 10−7 ◦

σy = 1 mm σθ = 6× 10−7 ◦

σz = 0.1 mm σφ = 6× 10−7 ◦. (24)

Note that, although the INS filter receives updates (e.g.
pressure sensor), this is not modeled for simplicity.

The camera position measurements (22) are modeled as
absolute measurements, with a constant uncertainty 6ci, set
to:

σx = 2 mm σψ = 1 ◦

σy = 2 mm σθ = 1 ◦

σz = 2 mm σφ = 1 ◦. (25)

In general, the measurement models are pessimistic, either
by over-conservative uncertainties or neglecting navigation
updates. The simulated trajectory is shown in figure 6.
It accounts for a ±20◦ pitch range of motion. The accu-
mulated uncertainty at the last INS pose of the generated
trajectory is around:

σx = 316 mm σψ = 2.3 ◦

σy = 315 mm σθ = 1.8 ◦

σz = 100 mm σφ = 3.1 ◦. (26)

The calibration procedure has been run 15000 times
re-generating themeasurement samples. The introduced error
in the I tC initialization was within ±100 mm for translation
and ±20◦ for rotation, which is considerably worse than the
accuracy that can be achieved measuring by hand. Results are
shown in figure 7. Most of the I tC components are recovered
with less than 1 cm and 0.5 degree error. However, it can
be seen that the z and pitch components show the highest
error bias, mainly due to the poor observability of the cali-
bration parameters. As studied in [39], [40], if the rotations
of the robot always happen around the same local axis, some
components of the transformation between sensors reference
frames cannot be observed. In order to better resemble the
actual dynamics of Girona1000, the simulated dataset of
robot poses included very limited rotations around its local

FIGURE 6. Synthetic INS trajectory generated to test the calibration
procedure on simulation, considering a 6m× 5m× 5 m region. The red
trajectory corresponds to the ground truth. The blue trajectory
corresponds to a noisy measured trajectory, following the model in (21).
The green trajectory corresponds to the optimized trajectory after the
calibration procedure is completed.

x and y axes. Consequently, it is natural that the z and pitch
components of the calibrated transformation show the highest
errors. In order to assess the influence of these errors in the
final point cloud reconstruction, another set of simulations is
reported in section V-B.

B. MOTION DISTORTION ON SYNTHETIC DATA
The goal of the simulations presented in this section is to
show the magnitude of the reconstruction error depending
on the accuracy of the calibration between the INS and the
camera. The simulated experimental set-up is schematically
shown in figure 8. The simulated experiment is the inspection
of an object (a sphere S of 100 mm diameter placed at a
known position) using a laser scanner. The robot describes
a smooth, realistic trajectory around the sphere at a distance
of between 1 m and 3 m while sweeping a laser plane to scan
the scene. Along its trajectory, the robot moves in all 3 axes
but it rotates only around 2, resembling the movement of
Girona1000. The robot moves at a linear speed of 0.5 m/s and
a rotational speed of 7◦/s. This set-up was chosen because it
was possible to recreate experimentally in the water tank (see
section VI-A).
At a given instant in time t , W xI represents the current

6-DoF pose {I } of the INS with respect to the world reference
frame {W }. The current ground truth pose of the camera
{C} is computed by composing W xI and I tC , where I tC is
the ground truth transformation between the INS and the
camera. Similarly, the current ground truth pose of the laser
{L} is computed by further composing {C} and C tL . The laser
plane projected at time t is πL . The curve described by the
intersection betweenπL and S is discretized in a finite number
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FIGURE 7. Histograms (blue) of I t∗C from 15000 simulations. The vertical red line is the average solution, and the vertical green line is the ground truth.
The solutions are fit into a Gaussian distribution, marked in red. The legend describes the standard deviation and the average error.

FIGURE 8. Scheme of the simulated experiment.

of points. In figure 8 only one of these points p is shown for
the sake of clarity.

In the ideal case where I tC is perfectly known, the set
of all points p lie exactly on the surface of S. However,
the non-ideal calibration process may introduce errors, so the
estimated pose between INS and camera I t̃C would differ
from I tC . Therefore, the non-ideal reconstructed point p̃
would not coincide with p, introducing a reconstruction error.
It is expected that the larger the calibration error is, also the
larger the reconstruction error will be.

In order to quantify the reconstruction error due to a mis-
calibration of I tC , the following process is simulated. At a

given time t , the current laser plane πL is first referenced with
respect to {W }:

WπL =
W xI ⊕ I tC ⊕ C tL ⊕ LπL (27)

The left superscript indicates the reference frame. Then,
a set of points on the intersection curve between the laser
plane and the sphere are computed. Each of these points
complies with:

p ∈ πL ∩ S. (28)

The erroneous reconstruction of each point p is then com-
puted as:

W p̃ = W xI ⊕ I t̃C ⊕ Cp, (29)

where:
Cp = 	 I tC 	 W xI ⊕ W p. (30)

Note that if I t̃C = I tC , then W p̃ = W p, as it should be.
This process is repeated for each pose in the simulated

trajectory. Finally, a sphere S̃ is fitted to the set of all the
points p̃ in the scan using least squares. Then, the error e is
computed as the distance between each point p̃ and the surface
of S̃.

e = dist(p̃, S̃) (31)

The root mean square sum of all these errors and the
error of the fitted sphere radius are calculated for each scan.
Then, these two metrics are averaged for all the scans in the
simulation.
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TABLE 1. Color code of I t̃C for figure 9. The erroneous transformation
represented by each color has error both in translation and rotation.

FIGURE 9. Error in the simulated scan of a sphere. Blue bars correspond
to rigid scanning (no motion distortion compensation is applied). Orange,
yellow and purple bars correspond to different levels of error in the
calibration (see table 1).

Non-ideal cumulative noise was also added to the robot
positions. At the end of the simulation, the robot had accu-
mulated a drift of 32 mm and 1.5◦ over a total displace-
ment of 7 m. Under these conditions, the 3D reconstruction
error of the sphere is compared for different errors of I t̃C in
figure 9. It can be seen that not accounting for the motion
distortion and treating each scan as rigid (blue) results in
large errors. The other three bars show that the better the
calibration, the lower the reconstruction error (as expected).
However, it should be highlighted that noise in INS readings
naturally plays a role as well in degrading the quality of the
reconstruction: even for very accurate calibrations the error
in the point cloud is still noticeable.

VI. EXPERIMENTAL RESULTS
The proposed motion distortion algorithm was also evaluated
experimentally. The experiments were carried out using the
hardware explained in section III in the water tank of the
CIRS lab. In the water tank there was a ChArUco board,
which was used to retrieve camera poses for the calibration
algorithm, and some objects to be scanned (see figure 10).

The initial guess for the 6-DoF transformation between the
INS and the camera measured by hand was:

I t̃C = [0.60, −0.25, 0.20, 0.1, −1.57, 3.14]

(32)

The first three values are the displacements in x, y and
z, respectively, all in meters, whereas the last three are the
Euler angles roll, pitch and yaw around the x, y and z axes,
respectively, applied in ZYX order, in radians.

A dataset containing 1100 images of the ChArUco and
32000 INS poses was gathered, since the output rate of the
INS was much higher than the frame rate of the camera. Data

FIGURE 10. Experimental underwater setup consisting of a ChArUco
board and a mock-up structure. The ChArUco board was only used as a
reference to gather camera poses for the calibration algorithm.

FIGURE 11. Position of the camera with respect to the robot using of I t̃C
measured by hand and the optimal I t∗C .

coming from both sensors was associated according to their
time stamps. Assuming that the robot moved smoothly and
knowing that the rate of the INS was much higher than the
camera, the corresponding INS poses were found using linear
interpolation for the translation and spherical linear interpo-
lation (SLERP) for the rotations. These pairs of poses were
then fed to the back-end minimizer explained in section IV.
The result of the calibration was:

I t∗C = [0.713, −0.237, 0.182, 0.0130, −1.394, 3.453]

(33)

The difference between the initial I t̃C and the optimized
I t∗C was therefore a translation of 115.2 mm and a rotation
of 16.4◦. These are reasonably low values considering the
difficulties of measuring by hand the translation and rotation
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FIGURE 12. Evaluation of the 3D reconstruction of a sphere scanned dynamically using three different approaches. Each of the five rows
represents one scan of a calibration sphere of known radius r = 100 mm. The first column was reconstructed treating the scan as rigid (no
motion distortion compensation was applied). The spheres in the second column were reconstructed compensating for motion distortion
using the value of I t̃C measured by hand, whereas the optimized value I t∗C was used for the third column. The two bar plots of each row
measure the sphere fitting error. The plot in the left shows the percentage error in the fitted radius. The plot in the right shows the
root-mean-squared distances of the point cloud to the fitted sphere. Blue, orange and yellow represent first, second and third approach,
respectively.

between the center of the robot and the focal point of the
camera at a non-standard position. Both transforms can be
visualized in figure 11.

In order to assess the benefits of the calibration, two sets
of experiments were designed. In both of them, the goal was
evaluating the performance of the final 3D reconstruction
following three approaches: (i) no motion distortion compen-
sation (that is, treating the scans as rigid), (ii) compensation
using the value of I t̃C measured by hand, and (iii) compen-
sation using the optimized value I t∗C . The first experiment
consisted in scanning a calibration sphere (see section VI-A).
In the second one, the target was a model of an underwater
industrial structure (see section VI-B).

A. CALIBRATION SPHERE
The results of the experiment scanning a calibration sphere
are shown in figure 12. Fives examples using the three afore-
mentioned approaches are compared in the figure using two
metrics: the radius error gives a measure of how well the
size of the real sphere is reconstructed, whereas the fitting
error RMSE is lower the closer the reconstructed point cloud
resembles a sphere. It can be seen in the bar plots of the
figure that trying to reconstruct the 3D shape of an object
scanned dynamically without taking the robot displacement
into account yields unusable results (first column of spheres).
The reconstruction improves largely when motion distortion
compensation is applied. However, using the optimized I t∗C
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FIGURE 13. Combining partial dynamic scans into a single point cloud of the object of interest. Point clouds (a) to (j) show some examples
of these partial dynamic scans. Note that they are affected by motion distortion. Point cloud (k) is the combination of 25 scans using
the optimal I t∗C . Point clouds (l) to (q) show the details A to F.
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FIGURE 14. Comparison of the structure reconstruction using (a) I t̃C measured by hand and (b) the optimal I t∗C . Using I t̃C only achieves a rough
alignment, where as a much better registration results using I t∗C .

generally results in better reconstructions. An unexpected
value can be seen in the radius error plot of the last row. There,
the orange bar (measured by hand) achieves the lowest error.
This is most likely due to the fact that the motion distortion
accidentally compensates for a distortion introduced by the
internal calibration of the scanner. It is nonetheless a very
particular case. The RMSE is however better when using I t∗C
in all cases. A qualitative visual inspection agrees that the
third approach is best.

B. STRUCTURE INSPECTION
Amore complete experiment was designed to inspect dynam-
ically the model structure shown in figure 10. During the
experiment, the robot navigated near the structure and the
reconstructed point clouds were aggregated using only odom-
etry readings from the INS. No alignment or registration
between point clouds was performed. A demonstrative video
was recorded and uploaded to: https://youtu.be/OytUI9 ×
3cWw. The results are shown in figure 13. The two first rows
of the figures show examples of single, partial scans. They are
shown as originally retrieved from the scanner, so they suffer
from motion distortion. In order to generate a single point
cloud, 25 of these scans are combined using navigation data
and the optimized I t∗C . Significant parts of the structure such
as joints and valves are detailed in the last two rows. It can
be seen that despite not using any registration algorithm,
the navigation data and the calibrated I t∗C are accurate enough
to provide a generally consistent global reconstruction of the
structure. Some errors can be seen in details D and F, for
example. They are likely caused by an error accumulation
coming from different sources, namely the navigation data,
the estimation of I t∗C and the internal calibration of the laser
scanner.

A comparison of this odometry-based mapping using the
I t̃C measured by hand and the optimal I t∗C is shown in
figure 14. It can be clearly seen that the reconstruction using
the optimal I t∗C is much better aligned.

VII. CONCLUSION AND FUTURE WORK
This paper has described how the distortion that affects
dynamic scans can be corrected by making use of the nav-
igation data of the robotic platform on which the scanner
is mounted. It has been shown using both synthetic and
real data that, in order to achieve a satisfactory motion dis-
tortion compensation, the pose of the camera with respect
to the inertial frame of the robot needs to be accurately
known. A probabilistic approach has been followed to
calibrate this parameter. In fact, this calibration can be
applied to retrieve the 6-DoF pose between any pair of
moving sensors by using observations of their respective
trajectories.

A complete literature review on underwater 3D scanning
and on visual-inertial extrinsic calibration has also been
presented. Moreover, both the calibration and the undistor-
tion processes have been simulated in order to numerically
assess how the different error sources affect the final 3D
reconstruction.

The two-fold goal of this paper was achieved: the 6-DoF
roto-translation between a camera and an INS was estimated
and this result was used experimentally to compensate for
the motion distortion present in dynamic scans. The main
limitation that has been found is that the effect of non-ideal
sensors constrains the number of scans that can be referred
to a common reference frame. These sources of error were
mainly the cumulative noise of the inertial sensor and the
internal calibration of the laser scanner.
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Finally, prospective works in this line of research may
include studies on how to take advantage of the undistorted
scans for dynamic mapping and navigation and to apply them
in realistic undersea scenarios.

APPENDIX
TRANSFORMATIONS IN SE (3)
The 6-DoF pose of reference frame {B} with respect to {A}
can be written as AtB ∈ SE(3). It is made up of a rotation
matrix ARB ∈ SO(3) and a translation vector AvB ∈ R3. The
rotation part can also be parameterized using the Euler angles
(φ θ ψ) in yaw-pitch-roll (ZYX) order. The resulting rotation
matrix is therefore

ARB = Rotz(ψ) Roty′ (θ ) Rotx ′′ (φ). (34)

Two successive transformations can be concatenated with
the composition operator to compute the total transformation:

AtC = AtB ⊕ BtC (35)

This operator actually encodes two operations:

AvC = AvB + ARB BvC (36)
ARC = ARB BRC (37)

Similarly, the composition operator can be used to express
a point in another reference frame:

Ap = AtB ⊕ Bp, (38)

which is actually implemented as:

Ap = AvB + ARB Bp (39)

Finally, it is sometimes necessary to compute the inverse
of a transform. This is done using the inverse composition
operator

BtA = 	 AtB, (40)

which actually encodes two operations:

BRA =
(
ARB

)T
(41)

BvA = − BRA AvB (42)

The interested reader can find a detailed tutorial on SE(3)
transformation parameterizations in [56].

ABBREVIATIONS
AUV autonomous underwater vehicle
CAD computer-aided design
DoF degree of freedom
DVL doppler velocity log
FoG fiber optic gyroscope

FoV field of view
GPS global positioning system
I-AUV intervention AUV
ICP iterative closest point
IMU inertial measurement unit
INS inertial navigation system
IR infrared
LiDAR light detection and ranging
LLS laser line scanner
NED north-east-down
RMSE root-mean-square error
ROV remotely operated vehicle
SfM structure from motion
SLERP spherical linear interpolation
SONAR sound navigation ranging
ToF time of flight
USBL ultra-short baseline
UUV unmanned underwater vehicle
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