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Abstract—Robot localization is a fundamental task in achieving
true autonomy for Autonomous Underwater Vehicles (AUV). If
inertial measurements from an Inertial Measurement Unit (IMU)
or a Doppler Velocity Log (DVL) want to be fused with some
perception system, such us a multibeam sonar or several acoustic
beacons; a full Simultaneous Localization And Mapping (SLAM)
problem must be solved. In contrast to filters, in a full SLAM
problem the whole robot trajectory is estimated and loop closure
events can be detected and closed along it. Common Inertial
Navigation Systems (INS), based on filters, only maintain the
estimation of the current robot pose. Therefore, these systems
cannot be directly used in a full SLAM problem. In this paper
we present a graph solution to integrate all inertial measurements
in a factor graph that can be extended to different perception
modalities and it is solved by applying Smoothing and Mapping
(SAM) [1]. The Preintegrated IMU factor, proposed by [2], is
combined with priors for other inertial measurements that have
been specially designed. This framework is tested on real data
from sea experiments, showing how our proposal performance is
similar to the estimation provided by high grade commercial INS
products based on filters. However, our system has the advantage
of allowing for fusion with exteroceptive sensors in SLAM.

Index Terms—Autonomous Underwater Vehicles, Simultaneous
Localization And Mapping, Dead Reckoning, Inertial Navigation
Systems, Lie Theory, Factor Graphs

I. INTRODUCTION

There is a widespread tradition of basing Inertial Navigation
Systems (INS) for robot localization on filters, for instance, the
well known Extended Kalman Filter (EKF). This tendency is
due to the computational and data efficiency of filters as they
only maintain the estimation of the current pose of the robot.
However, when exteroceptive sensors, such as optical cameras
or range sensors, want to be integrated on the localization
system, the whole robot trajectory must be estimated to
be able to detect loop closure events along the trajectory.
This problem is called full Simultaneous Localization and
Mapping (SLAM), it is modeled using a factor graph [1] and
it is solved applying Smoothing and Mapping (SAM), which
means solving a least squares optimization. Nowadays, there
are several algorithms to solve this kind of optimization online,
such as i SAM2 solver [3] (included in the GTSAM library [4])
or SLAM++ solver [5].
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Fig. 1: Factor graph modelling the underwater inertial naviga-
tor solved applying SAM.
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Fig. 2: Girona 1000 AUV: (a) general view and (b) robot
deployment at sea using Sextant boat from Universitat de
Girona.

The filtering approach provides absolute robot pose and
it is based on an initial condition from which integration
of linear accelerations and angular velocities measured by
an Inertial Measurement Unit (IMU) are accumulated. Bias
and noise from sensors must be removed before integration
and a precise initialization is crucial to avoid bad gravity
compensation on the measured acceleration vector. When
roboticists want to solve a full SLAM problem, increments
of motion between perception key frames are more important
than absolute pose. This is because wrong assumptions on bias
or gravity compensation can be fixed in future solutions as all
the robot trajectory is maintained. As it was suggested in [6],
as the gravity vector is constant in the world frame for all key
frames; accelerations can be directly integrated at the world
frame without any compensation. Is at the time of building
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the residuals to solve the graph, when the gravity acceleration
should be removed according to the current available solution.
This implies that while filter-based INSs usually need a few
minutes to initialize, calibrating its bias and the direction of the
gravity vector; a graph-based approach can avoid this calibra-
tion and start the estimation simultaneously with the mission.
After setting a reduced number of key frames, depending on
the applied sensor modalities, the problem will converge and
an accurate and stable localization will be available. Moreover,
the direction of the gravity vector in the world frame is
not attached, but it is also estimated every time the graph
is optimized. The same happens with sensor bias, that are
estimated every time the problem is solved.

When solving a full SLAM problem, equally important
as evaluating motion increments is to estimate their related
uncertainty. For most commercial INSs the covariance matrix
of the filter may not be fully available. Furthermore, this
uncertainty may not be parameterized in the Special Euclidean
group SE(3) [7], which is the de facto pose parameterization
for SAM solvers.

In mapping applications of the sea bed or the water column,
as well as in long term underwater applications, Autonomous
Underwater Vehicles (AUV) are always equipped with an
INS. In the underwater environment, where Global Navigation
Satellite Systems (GNSS) are denied and visual odometry
is not always guaranteed due to water turbidity, the IMU
must be complemented with a Doppler Velocity Log (DVL)
that measures AUV linear velocity. Also, a pressure sensor,
providing robot depth, or a Ultra-Short Baseline (USBL)
system mounted on a surface vehicle can be easily integrated
to the INS filter. However, if several acoustic beacons or
exteroceptive measures from optical cameras, imaging sonars,
multibeam profiling sonars or laser scanners want to be
integrated in the navigation system; a multimodal full SLAM
problem must be solved. Therefore, filter-based INS cannot be
used and SAM is the alternative. Moreover, SAM provides a
graph representation suitable for sensor fusion when different
perception modalities are considered.

In this paper we present an inertial framework for AUV
navigation based on factor graphs. The main contribution of
this work is to provide a flexible graph-based approach
able to seamlessly fuse a wide variety of perception
sensor modalities with inertial sensors in a mathematically
correct manner. Experimental underwater results on real
inertial data show how our proposal matches with high
grade commercial INS results while allowing for future
integration with exteroceptive sensors.

II. METHODOLOGY

To design an incremental inertial navigator using factor
graphs suitable to be integrated in an underwater full SLAM
problem, we propose to combine the Preintegrated IMU factor
[2] with priors coming from other inertial sensors mounted
on an AUV. Using the Preintegrated IMU factor we can
synchronize the perception system, that typically runs at low
frequencies from 0.1 to 10 Hz, with an IMU that runs at high

frequencies from 100 to 1000 Hz. Following this approach, all
IMU measurements are accumulated and only a node is set to
the factor graph when the perception system sets a key frame,
avoiding setting a node for each inertial measurement. This
way, the graph growth is slowed down and it is possible to
solve it on real time. Moreover, the Preintegrated IMU factor
allows to update sensor bias and gravity vector direction at
each solver call, avoiding to integrate all IMU measurements
from scratch every time one of these parameters is updated.

To build the inertial navigator, a factor graph with the struc-
ture at Fig. 1 is build using the GTSAM library [4]. The state at
each node in the graph is X = (Wtp, W Rp, Wvg, bace, bgyr)
where Wtp is the AUV position in the world frame {W},
W Rp is the robot orientation in the world frame, Wv g is the
linear velocity of the vehicle measured at the world frame and
bace and by, are respectively the bias of the accelerometers
and gyroscopes. The robot velocity is included in the state
as acceleration measurements imply a two step integration to
get position, being velocity the intermediate step. Moreover,
sensor bias are considered to evolve smoothly and are modeled
as constant between two key frames. In the proposed approach,
the body reference frame {B} of the AUV is set at the IMU
frame. As no dynamics of the vehicle are considered, we
did not found any reason to move the AUV base link to the
center of gravity of the vehicle. Therefore, accelerometers and
gyroscopes measurements can be directly integrated without
requiring any change of coordinate frame. A final consequence
on this, is that the pose of the rest of sensors is directly
calibrated against the IMU frame.

Common inertial sensors installed on AUVs, apart from an
IMU, are a DVL providing AUV linear velocities and a Sound
Velocity Sensor (SVS) providing water pressure and tempera-
ture. Combining pressure and temperature, the sound velocity
in water can be found. However, the measured water pressure
can also be directly related to AUV depth. To incorporate the
information provided by the DVL and the pressure sensor to
the inertial graph, as AUV velocity and depth are part of the
state vector, a linear velocity prior and a pressure prior can be
set at each key frame. Using these absolute inertial measures
we can restrict nodes and bound navigation drift, allowing the
estimation of IMU bias and the gravity direction. These prior
factors have been specially designed for this application. Their
expectation model and corresponding jacobians are presented
at the following subsections.

A. Pressure prior
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Fig. 3: Pressure prior diagram.
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Mounting an underwater pressure sensor on an AUV, if the
gravity vector is aligned with the (0,0, 1) vector of the world
frame {W} assuming a North East Down (NED) system; the
depth of the AUV in the world frame can be measured. Given
a pressure measurement p, the depth can be computed as

WZP = 2’
Py
where p is the water density and g is the gravity acceleration
magnitude. As shown in Fig. 3, the body reference frame { B}
and the pressure sensor frame {PRS} could not be aligned
with the world frame and translations are present between
these frames. Taking into account all these movements, the
expectation model for the depth extracted from the pressure
measurement is:

WZP = WZB + (WRBBtP)Z - bprs

where Wzp and W Rp are respectively the depth and the

rotation of the body frame in the world frame, Btp is the
translation between the body frame and the sensor frame, (a),
is an operator returning the third component of the vector a
and by, is a geometrical constant bias between the pressure
transducer and the sensor frame.

Taking into account that 25 and W Rp are part of the
state vector, the expectation model of the measured pressure
expressed from the state vector is:

hX) = pg [X.t(). + (X.RO)Ptp). — byrs] -

Analysing this equation we see that it corresponds to the action
on the SE(3) group between the robot pose and the vector Btp.
Considering this mathematical fact and applying Appendix D
from [7], the jacobian of the expectation model through the
state vector is:

oh SE(3)

5 = pg " "="" pg" Rp,

oh SE(3)

s = Polrt =" —pg" Rp[Ptrls,

where [|« is the hat operator and the rest of jacobians are
zero. As we are only considering the z component of the AUV
position, only the last row of each jacobian is needed.

Finally, the position of the pressure sensor can be estimated
by setting 't at the state vector. This translation vector must
be considered constant for all key frames, as the sensor is
mechanically attached to the AUV. Thus, the jacobian of the
expectation model through this parameter is:

oh SE(3)
o, = P9 = pe"Rs.

B. Linear velocity prior

Using a DVL, we can measure the linear velocity of an AUV
referenced at the sensor reference frame {DV L}. However,
this frame can be rotated and translated from the body frame
{B}, as it is shown in Fig. 4. As these two frames are static

{IMU, B}

\V DVL t
B {DVL}
VDVLRB\

{w}

Fig. 4: Linear velocity prior diagram.

on a Rigid Body (RB) that is in a rototranslation motion, a
linear velocity measured in the body frame Zv can be mapped
to the DVL frame applying:

DVLU — DVLRBBU + [DVLtB] y DVLRBBW, (1)

where PV Ry and PVt 5 are respectively the orientation and
the position of the body frame in the DVL frame and Pw is
the angular velocity of the body measured at the body frame.
If the body frame is placed at the IMU frame, as it is the
case, the angular velocities Pw are directly related to those
measured by the gyroscopes.

However, we also need to map linear velocities expressed in
the world frame "'v to linear velocities expressed in the body
frame Pv, as in the problem state vector the AUV velocity
is expressed in the world frame. As these two frames are not
attached to the same RB in motion and we can consider the
world frame as an inertial coordinate system, this map is v =
BRy"Wv and equation 1 becomes

DVLU — DVLRB(WRB)TWU + [DVLtB] y DVLRBBW,

where W Ry is the AUV orientation in the world frame.

Taking into account that " Rz and "W are part of the state
vector and that gyroscopes measures 2@ are affected by a bias
bgyr that is also part of the state vector, the expectation model
of the measured linear velocities at DVL frame expressed from
the state vector is:

h(X) = PYERpX.R()T X w() + [PVEtp]  PYERp(P@ — X.bgy,()).

Analysing this equation we see that the first term depends on
the robot orientation and velocity and the second term only
depends on the gyroscopes bias. Considering that velocities are
manipulated in the Special Orthogonal group SO(3), applying
Appendix B from [7] the jacobian of the expectation model
through the state vector is:

oh —1

on- _ DVLRBJSng 50(3) DVLRLRT[u]y R,

OR

Oh

87 — DVLRB J[?‘I SOZ(S) DVLRBRT7

v

h :
on - _ —Jgxb jBa 50()  _ [PVEtg) PVERp,
Obgyr

where the rest of jacobians are zero.
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Finally, the pose of the DVL sensor in the body frame can
be estimated by setting PV Ry and PVt at the state vector.
This pose must be considered constant for all key frames, as
the sensor is mechanically attached to the AUV. Thus, the
jacobians of the expectation model through these parameters
are:

oh

_ axb _ _ [DVL B Xy )

(()tDVL Ja [ RB( bqy ())} x 7
oh R bR
_ JBRa 4 jaxb jRq
aRDVL R + ]b ]R

50(3) _DVLR, [X.R()TX‘W()} - [PVLtg] PVIRy [357 X-hq;,,r()] .-

C. Inertial SAM algorithm

Combining the described priors with the Preintegrated IMU
factor [2], a factor graph with the structure at Fig. 1 is build.
Following Algorithm 1, a list of actions are repeated every
time a new key frame is received. A key frame can be set
at a temporal rate or, if some perception system exists, every
time a relevant measurement is received. In an underwater
environment this can happen every time an acoustic beacon
signal is received, or every time a complete sonar scan is
available. In the underwater domain, due to acoustics, this
happens every several seconds.

Algorithm 1 Inertial SAM algorithm

pim = PreintegratedCombinedMeasurement( IMU )
pim.set_gravity( (0,0,1) )
svs = SoundVelocitySensor()
dvl = DopplerVelocityLog()
graph = NonlinearFactorGraph()
graph.set_node( 0 )
graph.set_prior( 0, Zg )
graph.set_seed( 0, seed )
i=1
while true do
if key frame received then
y_pim = pim.get_state_and_reset()
graph.set_node( i )
graph.set_combined_imu_factor( i-1, i, y_pim )
graph.set_pressure_prior( i, svs.get_pressure() )
graph.set_linear_velocity_prior( i, dvl.get_vel() )
seed = graph.get_estimate(i-1) @ y_pim
graph.set_seed( i, seed )
graph.solve()
i++
else
pim.integrate_imu_measurement()
end if
end while

Following Algorithm 1, between the reception of key frames
the preintegration of IMU measurements is running. All ac-
celerometers and gyroscopes measurements are accumulated
- or preintegrated - in a single measurement assuming a
constant bias on the sensors. When a key frame is received,
the preintegration is stoped, the result is stored and a new

preintegration is started. Using the preintegrated measurement,
a Preintegrated IMU factor [2] is set between the current key
frame and the previous one. Moreover, at the current key frame
two priors are set. A pressure prior using pressure Sensor
measurements is applied and a linear velocity prior using
DVL measurements is set. Therefore, a chained factor graph
is build, where all trajectory nodes depend on the static pose
of each inertial sensor on the AUV. If the perception system
is able to detect loop closure events along the AUV trajectory,
this chained graph can evolve to a looped graph. Finally,
combining the last estimation for the previous key frame with
the preintegrated measurement, a seed for the current key
frame is provided to the solver. Using an incremental solver,
such as iSAM2 [3], the graph is solved at each key frame,
reaching an online AUV navigation system estimating the
whole robot trajectory.

III. EXPERIMENTAL SETUP

Sea experiments have been carried using the Girona 1000
AUV [8] (Fig 2). This AUV is a reconfigurable platform
suitable for intervention and surveying that is equipped with
several inertial sensors. Linear accelerations and angular ve-
locities are provided by Phins Compact C3 [9] - from iXblue,
Saint-Germain en Laye (France) -, an INS based on Fibre-
Optic Gyroscopes (FOG) and Microelectromechanical Sys-
tems (MEMS) accelerometers that is used as an IMU by
simply reading the raw sensor measurements. Linear velocity
is measured by DVL1000-4000m [10] - from Nortek, Rud
(Norway) - mounted at the lower AUV cylinder pointing the
seabed. Water pressure is provided by miniSVS1000 [11]
- from Valeport Ltd, Totnes (United Kingdom) - a SVS
measuring water temperature, pressure and sound velocity.
Finally, AUV position at surface is provided by L86 [12] -
from Quectel, Shanghai (China) -, a compact GNSS mounted
at the AUV antenna. All these inertial sensors are connected
to the INS to run the commercial iXblue navigation filter [9].
Fig. 5 shows the spacial distribution of these sensors on the
AUV and Table I provides the necessary dimensions.

Bt, (—825.70, —27.25, 129.45)mm

DVLip (—898.65, —377.25, —783.55)mm

DVLRE (RPY) (0.0,0.0,180.0)°

TABLE I: Girona 1000 AUV geometric parameters taken from
CAD drawings.

Experiments have been carried in front of Sant Feliu de
Guixols harbor (Girona, Catalonia) at shallow waters of 15-20
m depth with a flat seabed. In these experiments the AUV was
deployed at surface, acting as a surface vehicle. By this set up,
the DVL could measure the AUV linear velocity against the
seafloor and the AUV antenna was not submerged, providing
GNSS measurements during the whole mission. The GNSS
was disabled on the INS filter in order to simulate an un-
derwater performance. Therefore, these measurements do not
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Fig. 5: Inertial sensors mounted on Girona 1000 AUV.

affect the INS filter and can be used as AUV position ground
truth to benchmark against the proposed inertial navigator and
the INS filter.

IMU rate 100.0 Hz

SVS rate 8.0 Hz

DVL rate 40 Hz
Navigator rate 04 Hz

Gravity acceleration g 9.80665 m/s?

Water density p 1030 kg/m3

Pressure sensor bias by 35 mm

TABLE II: Navigator parameters

Finally, Table II shows the principal parameters used by
the navigator. Note that, although the rates for the SVS and
the DVL are given, pressure and linear velocity priors are set
at navigator rate. Therefore, these values are only provided
to show that these sensors are faster than the navigator and
only the closest measurement to each prior is used. The rest
of measurements are discarded. In Table III it is provided
the parameterization for the covariance matrices of the factors
applied to the navigator. The sensors standard deviation values
(o) have been characterized according to sensors data sheet.

IV. RESULTS

The navigation framework is validated on a surface survey
of one hour long covering an area of 150 x 70m describing
corridors of 10m width. At the end of the survey, the AUV
turned around the perimeter of the surveyed area (see Fig. 6).

Noise o
Accelerometer le-2 m/s?
Gyroscope le-5 rad/s
Acceleration integration le-8
Accelerometers bias random walk | (le-3, le-3, le-4) m/ 52
Gyroscopes bias random walk (le-4, 1le-4, 1e-5) rad/s
Bias le-5
Pressure prior 05m
Sensor position prior 0.01 m
DVL prior 0.1 m/s
Sensor position prior 0.0l m
Sensor orientation prior 0.002 rad
AUV position prior 05m
AUV orientation prior 0.01 rad
AUV linear velocity prior 0.1m/s
Accelerometer bias prior 0.001 m/s?
Gyroscope bias prior 0.001 rad/s

TABLE III: Dead reckoning noise standard deviation

The AUV moved at an averaged forward velocity of 0.5 m/s,
always keeping at surface.

70m

10m

150 m

Fig. 6: Survey followed by Girona 1000 AUV.

Fig. 7 shows the top view of the spatial trajectory followed
by the AUV. GNSS measurements (in blue) are considered as
the robot ground truth. We plot in red the estimation provided
by the commercial iXblue INS filter and the output of the
proposed navigator is plotted in green and orange. The green
trajectory corresponds to the current AUV pose estimation at
each time stamp, as if the navigator was a filter, and the orange
one corresponds to the hole AUV trajectory smoothed at the
last key frame. We can see how the smoothed trajectory is
more coherent with the ground truth, as it considers the hole
history of measurements. As it can be seen, after one hour of
survey both navigators provide trajectories spatially coherent,
being the iXblue solution the most coherent one. However, this
is because the AUV position control executes the survey based
on this estimation. Therefore, this coherence on the iXblue
solution does not mean that it provides the best estimation. To
answer this, we need to check the positional error evolution, or
drift, through time, shown at Fig. 8a. This error is computed
against the GNSS measurements. We can see that our system
behaves similarly to the commercial INS and bounds the
positional error at the same magnitude order, reaching a
maximum peak error of 8m. Also, we see how the online and
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Fig. 7: Top view of the estimated trajectory followed by the AUV, where the starting point is marked by a diamond and the
end point by a star. Blue: GNSS measurements considered as ground truth. Red: output of the iXblue INS filter [9]. Green:
Online estimation provided by the proposed navigator at each time stamp. Orange: Smoothed trajectory at the last key frame
estimated by our navigator.
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Fig. 9: Inertial sensors calibration evolution through time.

the smoothed solutions behave similarly, being the smoothed
trajectory a bit better at the end of the mission. Finally, this
figure shows that the z component of the positional error
is bounded at 0.5m thanks to the information provided by
the pressure priors. However, as any direct measurement is
available in the planar directions, the error is around 10m in
z and y directions. All estimations show this same behaviour
on the drift.

Fig. 8b show the accelerometers and gyroscopes bias esti-
mation evolution through time. We can see that, as expected
using FOG, the gyroscopes bias are very small. Analysing the
bias evolution it is perceived a change of tendency at each
transect of the survey, specially at the = and y directions. Fig.
9a shows the calibration of the SVS position. The continuous
line shows the estimation, whereas the dashed line shows
the design value extracted from draws. It can be seen how
in the z direction the value is stabilized. However, the other
directions show a tendency without reaching a steady state. For
all directions the change is less than one millimeter, meaning
that or the SVS is perfectly assembled or this calibration is
not observable with the provided information. Finally, Fig. 9b
shows the calibration of the DVL pose during the mission.
Again, any stabilization is perceived in any translation or
orientation. Moreover, any substantial change in orientation is
observed. However, all translations evolve some millimeters
but without reaching any steady state.

As calibration results are not concluding we propose to
repeat the same experimentation without taking into account
the calibration of the sensors pose, maintaining the design
values as parameters. As the previous results suggested and as

Fig. 10a and Fig. 10b show, no changes on the estimation are
appreciated, reaching the same behaviour on the estimation.
In conclusion, in this experimentation we showed how the
proposed inertial navigator based on factor graphs reaches a
performance comparable to a commercial INS based on filters.
Inertial sensors pose calibration was proposed and derived but
results show how this calibration is not relevant using only
proprioceptive information.

V. CONCLUSIONS

In this paper we presented the inertial base for an under-
water full SLAM system applying some acoustic perception
system. We introduced an inertial factor graph combining mea-
surements from accelerometers, gyroscopes, DVL and pressure
sensor; that real experimentation showed how this system has
a performance comparable to a high grade commercial INS
based on filters. However, our system is already prepared to
support exteroceptive information from other acoustic or op-
tical devices. Following our approach, an online estimation is
available and navigation uncertainty is estimated in the SE(3)
group, the base parameterization for SAM solvers. Moreover,
using factor graphs, no precise initial condition or IMU bias is
need. Therefore, no initial calibration is required when turning
on the robot and estimation can start simultaneously with AUV
motion, as IMU bias, sensor poses and gravity vector direction
are estimated by the graph.

Future work is to develop a preintgrated DVL factor to use
all measurements provided by the DVL applying the same
principle beyond the preintegrated IMU factor. By applying
this methodology, no DVL measurements will be discarded
and we expect to improve the system performance. Moreover,
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Fig. 10: Same experiment but without using sensors pose calibration, considering its pose as a parameter. a) Estimated position
error evolution through time computed against GNSS measurements following the aforementioned color convention. Error split
up by components and, below, error norm. b) Accelerometers and gyroscopes bias estimation evolution through time.

more tests using cheaper and less precise IMUs must be done, [11] Valeport. minisvs1000. [Online]. Available:

applying gyroscopes based on MEMS instead of FOG. Finally, }ll)tt;t)s:/}(w:v;v.valez%ozr;.cc()i.fuk/contem/upl0ads/2022/06/Va]eport—miniSVS—
e . . . atasheet-June- p
this inertial framework should be apphed in a full SLAM [12] Quectel. 186. [Online]. Available: https://www.quectel.com/wp-

problem in combination with several acoustic beacons or the content/uploads/pdfupload/Quectel;, 86 g N S Sspeci ficationy 1.3.pdf
registration of sonar scans gathered by a multibeam sonar
mounted on a Pan&Tilt platform.
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